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Abstract. In 1918 Hardy and Littlewood [6] showed that

I1(T ) :=

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt ∼ T log T

for sufficiently large T > 0, where ζ(s) is the Riemann zeta-function. This short note is
devoted to presenting a proof of this result using the technique of approximating ζ(s) by
special Dirichlet polynomials. Our exposition is largely based on [14] with some adaptations.
We shall also describe briefly Titchmarsh’s proof of this asymptotic and discuss higher
moments of ζ(s) on the critical line.

1. The Euler-Maclaurin Summation Formula

Let f : [M,N ]→ C be a continuously differentiable function on [M,N ], where N ≥M ≥ 0
are integers. The Euler-Maclaurin formula [14, Equ (2.1)] states∑

M<n≤N

f(x) =

∫ N

M

(f(x) + ψ(x)f ′(x)) dx+
f(N)− f(M)

2
,

where ψ(x) = x − bxc − 1/2 = {x} − 1/2. Here bxc denotes the integer part of x and
{x} = x − bxc the fractional part of x. The Euler-Maclaurin formula can be derived easily
by integration by parts.

Suppose now that [a, b] ⊆ [M,N ] is a subinterval, where a, b ∈ R. Then we have∑
M<n≤b

f(x) =

∫ bbc
M

(f(x) + ψ(x)f ′(x)) dx+
f(bbc)− f(M)

2

=

∫ bbc
M

(f(x) + {x}f ′(x)) dx.

Note that ∫ b

bbc
{x}f ′(x) dx =

∫ b

bbc
(x− bbc)f ′(x) dx = {b}f(b)−

∫ b

bbc
f(x) dx.

Hence ∑
M<n≤b

f(x) =

∫ b

M

(f(x) + {x}f ′(x)) dx− {b}f(b)

=

∫ b

M

(f(x) + ψ(x)f ′(x)) dx+
f(b)− f(M)

2
− {b}f(b).

1
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Similarly, we have∑
M<n≤a

f(x) =

∫ a

M

(f(x) + ψ(x)f ′(x)) dx+
f(a)− f(M)

2
− {a}f(a).

It follows that∑
a<n≤b

f(x) =

∫ b

a

(f(x) + ψ(x)f ′(x)) dx+
f(b)− f(a)

2
− ({b}f(b)− {a}f(a))

=

∫ b

a

(f(x) + ψ(x)f ′(x)) dx− (ψ(b)f(b)− ψ(a)f(a)). (1)

We shall apply this formula in the next section to estimate the sum
∑

a<n≤b n
−s.

2. Technical Lemmas

In this section we prove two technical results needed for estimating the sum
∑

a<n≤b n
−s.

Such results are useful in estimating exponential sums of certain types. The author learned
these results from [14, Chapter 2].

Lemma 2.1. Let g : [a, b]→ R be a twice continuously differentiable function on [a, b] such
that g′(x)g′′(x) 6= 0 for all x ∈ [a, b]. If h : [a, b] → C is any continuously differentiable
function on [a, b], then ∣∣∣∣∫ b

a

h(x)e2πig(x) dx

∣∣∣∣ ≤ H

π

(
1

|g′(a)|
+

1

|g′(b)|

)
,

where

H = max(|h(a)|, |h(b)|) +

∫ b

a

|h′(x)| dx. (2)

Proof. Since g′′(x) never vanishes on [a, b], it follows that g′(x) is monotone on [a, b]. But
g′(x) 6= 0 for all x ∈ [a, b]. Thus 1/g′(x) and |g′(x)| are both monotone on [a, b]. Note that

2πi

∫ b

a

e2πig(x) dx =
e2πig(b)

g′(b)
− e2πig(a)

g′(a)
−
∫ b

a

e2πig(x) d

(
1

g′(x)

)
with ∣∣∣∣∫ b

a

e2πig(x) d

(
1

g′(x)

)∣∣∣∣ ≤ ∣∣∣∣∫ b

a

d

(
1

g′(x)

)∣∣∣∣ =

∣∣∣∣ 1

g′(b)
− 1

g′(a)

∣∣∣∣ ≤ 1

|g′(a)|
+

1

|g′(b)|
.

Hence

2π

∣∣∣∣∫ b

a

e2πig(x) dx

∣∣∣∣ ≤ 2

(
1

|g′(a)|
+

1

|g′(b)|

)
,

which gives ∣∣∣∣∫ b

a

e2πig(x) dx

∣∣∣∣ ≤ 1

π

(
1

|g′(a)|
+

1

|g′(b)|

)
. (3)

Suppose first that |g′(x)| is decreasing on [a, b]. By integration by parts we have∫ b

a

h(x)e2πig(x) dx = h(b)

∫ b

a

e2πig(x) dx−
∫ b

a

(∫ x

a

e2πig(y) dy

)
h′(x) dx.
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It follows by (3) that∣∣∣∣∫ b

a

h(x)e2πig(x) dx

∣∣∣∣ ≤ |h(b)|
∣∣∣∣∫ b

a

e2πig(x) dx

∣∣∣∣+

∫ b

a

∣∣∣∣∫ x

a

e2πig(y) dy

∣∣∣∣ |h′(x)| dx

≤ |h(b)|
π

(
1

|g′(a)|
+

1

|g′(b)|

)
+

∫ b

a

1

π

(
1

|g′(a)|
+

1

|g′(x)|

)
|h′(x)| dx

≤ 1

π

(
|h(b)|+

∫ b

a

|h′(x)| dx
)(

1

|g′(a)|
+

1

|g′(b)|

)
.

If |g′(x)| is increasing on [a, b], we have∫ b

a

h(x)e2πig(x) dx = h(a)

∫ b

a

e2πig(x) dx+

∫ b

a

(∫ b

x

e2πig(y) dy

)
h′(x) dx.

By the same argument we obtain∣∣∣∣∫ b

a

h(x)e2πig(x) dx

∣∣∣∣ ≤ 1

π

(
|h(a)|+

∫ b

a

|h′(x)| dx
)(

1

|g′(a)|
+

1

|g′(b)|

)
.

This completes the proof of the lemma. �

Lemma 2.2. Let θ ∈ [0, 1) and let g : [a, b] → R be a twice continuously differentiable
function on [a, b] such that |g′(x)| ≤ θ and g′′(x) 6= 0 for all x ∈ [a, b]. If h : [a, b] → C is
any continuously differentiable function on [a, b], then∣∣∣∣∫ b

a

h(x)ψ(x)e2πig(x) dx

∣∣∣∣ ≤ 4H

π2(1− θ)
,

where H is defined as in (2).

Proof. Let n ∈ Z \ {0} be a nonzero integer. Applying Lemma 2.1 with g(x) replaced by
g(x) + nx yields ∣∣∣∣∫ b

a

h(x)e2πi(g(x)+nx) dx

∣∣∣∣ ≤ 2H

π(|n| − θ)
. (4)

The function ψ(x) is piecewise linear on R, periodic of period 1, and smooth on (n, n + 1)
for every n ∈ Z with jump discontinuities at integer points. Its Fourier expansion is

ψ(x) =
∑

0<|n|≤N

e2πinx

2πin
+O

(
1

1 + ‖x‖N

)
,

where N ≥ 1 and ‖x‖ is the shortest distance of x to Z. It follows by (4) that∣∣∣∣∫ b

a

h(x)ψ(x)e2πig(x) dx

∣∣∣∣ ≤ ∞∑
n=1

2H

π2n(n− θ)
+O

(∫ b

a

|h(x)|
1 + ‖x‖N

dx

)
.

Since
∞∑
n=1

2H

π2n(n− θ)
≤ 2H

π2(1− θ)

(
1 +

∞∑
n=2

1

n(n− 1)

)
=

4H

π2(1− θ)
,

we have ∣∣∣∣∫ b

a

h(x)ψ(x)e2πig(x) dx

∣∣∣∣ ≤ 4H

π2(1− θ)
+O

(∫ b

a

|h(x)|
1 + ‖x‖N

dx

)
.
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We finish the proof of the lemma by letting N →∞. �

Let N ≥ 1 be a positive integer and let T ∈ R with 1 ≤ T ≤ N . Let s = σ + it ∈ C
with σ > 0 and |t| ≤ 2T . Applying (1) with f(x) = h(x)e2πig(x), where h(x) = x−σ and
g(x) = −(t/2π) log x, we obtain∑

T<n≤N

1

ns
=
T 1−s −N1−s

s− 1
+

∫ N

T

ψ(x)f ′(x) dx+O(T−σ).

Note that∫ N

T

ψ(x)f ′(x) dx =

∫ N

T

h′(x)ψ(x)e2πig(x) dx+ 2πi

∫ N

T

h(x)g′(x)ψ(x)e2πig(x) dx.

It is easily seen that∣∣∣∣∫ N

T

h′(x)ψ(x)e2πig(x) dx

∣∣∣∣ ≤ 1

2

∫ N

T

|h′(x)| dx < T−σ.

Let h1(x) := h(x)/x = x−σ−1. Then we have

H1 := max(|h1(T )|, |h1(N)|) +

∫ N

T

|h′1(x)| dx < 2T−σ−1.

Since

|g′(x)| = |t|
2πx

≤ 1

π
< 1

for all x ∈ [T,N ], it follows by Lemma 2.2 that∣∣∣∣2πi∫ N

T

h(x)g′(x)ψ(x)e2πig(x) d

∣∣∣∣ = |t|
∣∣∣∣∫ N

T

h1(x)ψ(x)e2πig(x) d

∣∣∣∣� |t|H1 � T−σ.

We have thus shown that ∑
T<n≤N

1

ns
=
T 1−s −N1−s

s− 1
+O(T−σ). (5)

3. An Approximation of ζ(s)

Recall the Riemann zeta-function ζ(s) is originally defined by

ζ(s) :=
∞∑
n=1

1

ns

for s = σ + it ∈ C with σ > 1. Let N be a positive integer. By partial summation we have
∞∑

n=N+1

1

ns
= − 1

N s−1 + s

∫ ∞
N

bxc
xs+1

dx

= − 1

N s−1 + s

∫ ∞
N

1

xs
dx− s

2

∫ ∞
N

1

xs+1
dx− s

∫ ∞
N

ψ(x)

xs+1
dx

=
N1−s

s− 1
− N−s

2
− s(s+ 1)

∫ ∞
N

(∫ x

N

ψ(y) dy

)
1

xs+2
dx,
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where σ > −1. It is easily seen that∫ ∞
N

(∫ x

N

ψ(y) dy

)
1

xs+2
dx�

∫ ∞
N

1

xσ+2
dx =

N−σ−1

σ + 1
,

since ψ(x) is periodic of period 1 and∫ 1

0

ψ(x) dx = 0.

Hence

ζ(s) =
∑
n≤N

1

ns
+
N1−s

s− 1
− N−s

2
+O

(
|s(s+ 1)|N−σ−1

σ + 1

)
for σ > −1 and N ≥ 1.

Suppose now that σ > 0 and |t| ≤ 2T with 1 ≤ T ≤ N . By (5) we have

ζ(s) =
∑
n≤T

1

ns
+
T 1−s

s− 1
− N−s

2
+O

(
|s(s+ 1)|N−σ−1

σ + 1

)
+O(T−σ).

We obtain the following result [14, Proposition 6.1] by letting N →∞.

Proposition 3.1. Let T ≥ 1 and let s = σ + it ∈ C with σ > 0 and |t| ≤ 2T . Then

ζ(s) =
∑
n≤T

1

ns
+
T 1−s

s− 1
+O(T−σ).

In particular, Proposition 3.1 implies that ζ(1 + it) = O(log t) for large t. Taking s =
1/2 + it we obtain the following simple approximation of ζ(s) on the critical line by its
corresponding partial sum.

Corollary 3.2. Let T ≥ 1 and let δ ∈ (0, 2). Then

ζ(1/2 + it) =
∑
n≤T

1

n1/2+it
+O(δ−1T−1/2)

for all t ∈ R with δT ≤ |t| ≤ 2T .

4. The Mean Square of Dirichlet Polynomials

A Dirichlet polynomial AN(s) of length N ≥ 1 is a complex-valued function of a complex
variable s = σ + it of the form

AN(s) :=
N∑
n=1

an
ns

with a1, ..., an ∈ C. We shall now prove the following result [14, Theorem 13.1] concerning
the mean square of AN(s) over the interval [0, T ].

Proposition 4.1. For T > 0 we have∫ T

0

|AN(s)|2 dt = T

N∑
n=1

|an|2

n2σ
+O

( N∑
n=1

n2|an|2

n2σ

) 1
2
(

N∑
n=1

|an|2

n2σ

) 1
2

 .
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Proof. Let

I(σ, T ) :=

∫ T

0

|AN(s)|2 dt.

Note that

I(σ, T ) =
N∑

m,n=1

aman
(mn)σ

∫ T

0

( n
m

)it
dt = T

N∑
n=1

|an|2

n2σ
+

∑
1≤m,n≤N
m6=n

aman
(mn)σ

· (n/m)iT − 1

i log(n/m)
.

By the mean value theorem we have∣∣∣log
n

m

∣∣∣ ≥ |m− n|
max(m,n)

>
|m− n|
m+ n

for every pair (m,n) with 1 ≤ m 6= n ≤ N . Thus∑
1≤m,n≤N
m6=n

aman
(mn)σ

· (n/m)iT − 1

i log(n/m)
�

∑
1≤m,n≤N
m6=n

|am||an|
(mn)σ

· m+ n

|m− n|
= 2

∑
1≤m,n≤N
m6=n

|am||an|
(mn)σ

· m

|m− n|
.

Now we invoke the following famous inequality of Hilbert:∣∣∣∣∣ ∑
1≤m 6=n≤N

ambn
m− n

∣∣∣∣∣ ≤ π

(
N∑
n=1

|an|2
) 1

2
(

N∑
n=1

|bn|2
) 1

2

,

where a1, ..., aN , b1, ..., bN ∈ C. Replacing an with |an|/nσ−1 and bn with |an|/nσ in Hilbert’s
inequality, we obtain

∑
1≤m,n≤N
m6=n

|am||an|
(mn)σ

· m

|m− n|
≤ π

(
N∑
n=1

n2|an|2

n2σ

) 1
2
(

N∑
n=1

|an|2

n2σ

) 1
2

.

Hence

I(σ, T ) = T

N∑
n=1

|an|2

n2σ
+O

( N∑
n=1

n2|an|2

n2σ

) 1
2
(

N∑
n=1

|an|2

n2σ

) 1
2

 .

This completes the proof. �

We obtain the following result [14, Corollary 13.2] as a corollary of Proposition 4.1.

Corollary 4.2. For T > 0 we have∫ T

0

|AN(s)|2 dt = (T +O(N))
N∑
n=1

|an|2

n2σ
.

Remark 4.1. To make our exposition as self-contained as possible, we give here a short proof
of Hilbert’s inequality used in the proof of Proposition 4.1. In fact, we shall prove that if
a1, ..., an and b1, ..., bn are two sequences of complex numbers, and if m1, ...,mn are pairwise
distinct integers, then∣∣∣∣∣ ∑

1≤k 6=l≤n

akbl
mk −ml

∣∣∣∣∣ ≤ π

(
n∑
k=1

|ak|2
) 1

2
(

n∑
k=1

|bk|2
) 1

2

.
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Note that for any c ∈ Z \ {0},
i

2π

∫ 2π

0

(x− π)eicx dx =
1

c
.

Thus we have ∣∣∣∣∣ ∑
1≤k 6=l≤n

akbl
mk −ml

∣∣∣∣∣ =
1

2π

∣∣∣∣∣
∫ 2π

0

(x− π)
∑

1≤k 6=l≤n

akbl e
i(mk−ml)x dx

∣∣∣∣∣ .
Since ∫ 2π

0

(x− π) dx = 0,

it follows that∣∣∣∣∣ ∑
1≤k 6=l≤n

akbl
mk −ml

∣∣∣∣∣ =
1

2π

∣∣∣∣∣
∫ 2π

0

(x− π)
n∑
k=1

ake
imkx

n∑
k=1

bke
−imkx dx

∣∣∣∣∣ .
By Cauchy-Schwarz inequality, the right side is

≤ 1

2π

∫ 2π

0

(x− π)2

∣∣∣∣∣
n∑
k=1

ake
imkx

∣∣∣∣∣
2

dx

 1
2
∫ 2π

0

∣∣∣∣∣
n∑
k=1

bke
imkx

∣∣∣∣∣
2

dx

 1
2

≤ 1

2

∫ 2π

0

∣∣∣∣∣
n∑
k=1

ake
imkx

∣∣∣∣∣
2

dx

 1
2
∫ 2π

0

∣∣∣∣∣
n∑
k=1

bke
imkx

∣∣∣∣∣
2

dx

 1
2

= π

(
n∑
k=1

|ak|2
) 1

2
(

n∑
k=1

|bk|2
) 1

2

.

This completes the proof. Further generalizations of Hilbert’s inequality have been discovered
by Montgomery and Vaughan [16].

For a different proof of Proposition 4.1, see [14, Theorem 13.1].

5. The Second Moment of ζ(1/2 + it)

We are now ready to prove the following theorem [6, Theorem 2.41] concerning the mean
square of ζ(s) on the critical line.

Theorem 5.1. For large T > 0 we have

I1(T ) :=

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt ∼ T log T.

Proof. Let m := blog T/ log 2c and let Tk := T/2k for 0 ≤ k ≤ m + 1. Then Tk ≥ 1 for all
0 ≤ k ≤ m. For t ∈ R with Tk+1 < t ≤ Tk, we have by Corollary 3.2 that∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 =

∣∣∣∣∣∑
n≤Tk

1

n1/2+it

∣∣∣∣∣
2

+O(1),
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since ∑
n≤Tk

1

n1/2+it
�
∑
n≤Tk

1

n1/2
�
√
Tk.

By Proposition 4.1 we have∫ Tk

Tk+1

∣∣∣∣∣∑
n≤Tk

1

n1/2+it

∣∣∣∣∣
2

dt =

∫ Tk+1

0

∣∣∣∣∣∑
n≤Tk

n−iTk+1

n1/2+it

∣∣∣∣∣
2

dt

= Tk+1

∑
n≤Tk

1

n
+O

(∑
n≤Tk

n

) 1
2
(∑
n≤Tk

1

n

) 1
2


= Tk+1 log Tk +O(Tk(log T )

1
2 ).

Hence ∫ T

Tm+1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt =
m∑
k=0

Tk+1 log Tk +O(T (log T )
1
2 ).

Since m+ 1 > log T/ log 2, we have

m∑
k=0

Tk+1 log Tk =
m∑
k=0

T log T

2k+1
+O(T ) =

(
1− 1

2m+1

)
T log T +O(T ) = T log T +O(T ).

It follows that ∫ T

Tm+1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt = T log T +O(T ).

But Tm+1 = T/2m+1 < 1 implies∫ Tm+1

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt = O(1).

Therefore, we conclude that∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt = T log T +O(T (log T )
1
2 ).

This completes the proof. �

Remark 5.1. More precise asymptotics for I1(T ) are known. For instance, one can show [20,
Theorem 7.4] that

I1(T ) = T log T + (2γ − 1− log 2π)T +O(T 1/2+ε)

for any given ε > 0, where γ is Euler’s constant. Balasubramanian [2] further reduced the
exponent 1/2 in the error term down to 1/3.
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6. Titchmarsh’s Approach

In 1927 Titchmarsh [19] gave a proof of Theorem 5.1 using tools from Fourier analysis
without much reference to deep properties of ζ(s). Here we describe briefly the main ideas
behind his proof. Recall that for any function f(x) ∈ L1(R), the Fourier transform F (ξ) of
f is defined by

F (ξ) :=

∫ +∞

−∞
f(x)e−2πiξx dx.

The well-known Plancherel’s formula states that if f(x), g(x) ∈ L1(R) ∩ L2(R) with Fourier
transforms F (ξ) and G(ξ), respectively, then∫ +∞

−∞
f(x)g(x) dx =

∫ +∞

−∞
F (ξ)G(ξ) dξ. (6)

In particular, one has ∫ +∞

−∞
|f(x)|2 dx =

∫ +∞

−∞
|F (ξ)|2 dξ. (7)

Let η ∈ R be a real variable independent of x and ξ. Since the Fourier transform of f(x)e2πiηx

is F (ξ − η), it follows by (6) that∫ +∞

−∞
|f(x)|2e−2πiηx dx =

∫ +∞

−∞
F (ξ)F (ξ − η) dξ.

This means that the Fourier transform of |f(x)|2 is∫ +∞

−∞
F (ξ)F (ξ − η) dξ =

∫ +∞

−∞
F (ξ + η)F (ξ) dξ.

By (7) we have ∫ +∞

−∞
|f(x)|4 dx =

∫ +∞

−∞

∣∣∣∣∫ +∞

−∞
F (ξ + η)F (ξ) dξ

∣∣∣∣2 dη. (8)

Now we consider the Riemann zeta-function ζ(s). We begin with the Cahen-Mellin integral

e−z =
1

2πi

∫ c+i∞

c−i∞
Γ(s)z−s ds,

valid for z ∈ C with <(z) > 0 and c > 0, where

Γ(s) :=

∫ ∞
0

xs−1e−x dx.

For c > 1 we have

1

ez − 1
=
∞∑
n=1

e−nz =
1

2πi

∫ c+i∞

c−i∞
Γ(s)ζ(s)z−s ds,

where the interchange of summation and integration is easily justified using Stirling’s formula.
Moving the line of integration to <(s) = 1/2 and taking into account the simple pole of the
intergrand at s = 1 with residue 1/z, we obtain

1

ez − 1
− 1

z
=

1

2πi

∫ 1/2+i∞

1/2−i∞
Γ(s)ζ(s)z−s ds =

1

2π

∫ +∞

−∞
Γ

(
1

2
+ it

)
ζ

(
1

2
+ it

)
z−1/2−it dt.
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Taking z = ie2πξ−iδ with 0 < δ < 1, we have

1

exp(ie2πξ−iδ)− 1
− 1

ie2πξ−iδ
=

1

2π

∫ +∞

−∞
Γ

(
1

2
+ it

)
ζ

(
1

2
+ it

)
e−πξ−i(π/2−δ)(1/2+it)e−2πiξt dt.

This shows that the Fourier transform of

1

2π
Γ

(
1

2
+ it

)
ζ

(
1

2
+ it

)
e−i(π/2−δ)(1/2+it)

is

eπξ
(

1

exp(ie2πξ−iδ)− 1
− 1

ie2πξ−iδ

)
.

Applying (7) we obtain L(δ) = R(δ), where

L(δ) =
1

(2π)2

∫ +∞

−∞

∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2 ∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 e(π−2δ)t dt,
R(δ) =

∫ +∞

−∞
e2πξ

∣∣∣∣ 1

exp(ie2πξ−iδ)− 1
− 1

ie2πξ−iδ

∣∣∣∣2 dξ.
By Euler’s reflection formula we have∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2 = Γ

(
1

2
+ it

)
Γ

(
1

2
− it

)
=

π

sin π(1/2 + it)
=

π

cosh πt
.

Since

1

cosh πt
=

2

eπt + e−πt
=

2e−π|t|

1 + e−2π|t|
= 2e−π|t|

(
1− e−2π|t|

1 + e−2π|t|

)
= 2e−π|t|(1 +O(e−2π|t|)),

it follows that ∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2 = 2πe−π|t| +O(e−3π|t|).

Thus we have

L(δ) =
1

2π

∫ ∞
0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 e−2δt dt+O

(∫ ∞
0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 e−2(π−δ)t dt
)
.

Note that

ζ(s) = s

∫ ∞
1

bxc
xs+1

dx =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx

for s = σ+ it ∈ C with σ > 0. Taking σ = 1/2 we see that ζ(1/2 + it) = O((1 + |t|)). Hence

L(δ) =
1

2π

∫ ∞
0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 e−2δt dt+O(1).

A Tauberian result [6, Lemma 2.413] implies that Theorem 5.1 is equivalent to the following
theorem [19, Theorem I].

Theorem 6.1. As δ → 0+ we have∫ ∞
0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 e−δt dt ∼ 1

δ
log

1

δ
.
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Consequently, our original task of proving Theorem 5.1 is reduced to the estimation of
R(δ) with the goal of showing that

R(δ) ∼ 1

4πδ
log

1

δ
(9)

as δ → 0+. Performing the substitution η = e2πξ we get

R(δ) =
1

2π

∫ ∞
0

∣∣∣∣ 1

exp(iηe−iδ)− 1
− 1

iηe−iδ

∣∣∣∣2 dη
=

1

2π

∫ ∞
π

∣∣∣∣ 1

exp(iηe−iδ)− 1
− 1

iηe−iδ

∣∣∣∣2 dη +O(1),

since 1/(ez − 1) − 1/z is analytic in |z| < 2π. Expand out the integrand and observe that
the main contribution comes from the term

1

2π

∫ ∞
π

∣∣∣∣ 1

exp(iηe−iδ)− 1

∣∣∣∣2 dη =
1

2π

∫ ∞
π

dη

(1− exp(iηe−iδ))(1− exp(−iηeiδ))
.

Note that | exp(−iηe−iδ)| = | exp(iηeiδ)| = e−η sin δ < 1 when 0 < δ < 1. Using the power
series expansion z/(z − 1) =

∑∞
n=1 z

n valid for |z| < 1 we get

1

(1− exp(iηe−iδ))(1− exp(−iηeiδ))
=

∞∑
m,n=1

exp
(
−imηe−iδ + inηeiδ

)
.

The contribution from the diagonal terms gives

1

2π

∫ ∞
π

∞∑
n=1

e−2nη sin δ dη =
1

2π

∫ ∞
π

e−2η sin δ

1− e−2η sin δ
dη ∼ 1

4πδ

∫ ∞
π

e−2η sin δ

η
dη.

By integration by parts we obtain∫ ∞
π

e−2η sin δ

η
dη =

∫ ∞
2π sin δ

e−η

η
dη = −e−2π sin δ log(2π sin δ) +

∫ ∞
2π sin δ

e−η log η dη.

Since the improper integral∫ ∞
0

e−η log η dη =

∫ 1

0

e−η log η dη +

∫ ∞
1

e−η log η dη

is absolutely convergent, we have∫ ∞
π

e−2η sin δ

η
dη = −e−2π sin δ log sin δ +O(1) ∼ log

1

δ
.

This leads to
1

2π

∫ ∞
π

∞∑
n=1

e−2nη sin δ dη ∼ 1

4πδ
log

1

δ
.

On the other hand, it is not hard to show that the contribution from the off-diagonal terms

1

2π

∞∑
m,n=1
m 6=n

∫ ∞
π

exp
(
−imηe−iδ + inηeiδ

)
dη =

1

2π

∞∑
m,n=1
m 6=n

exp(−(m+ n)π sin δ − i(m− n)π cos δ)

(m+ n)π sin δ + i(m− n)π cos δ

is O(δ−1). This proves (9). The reader is referred to [19, Theorem I] for further details.
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7. Concluding Remarks

More generally, one can study the 2k-th moment of ζ(s) on the critical line defined by

Ik(T ) :=

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt
for any k > 0. The study of Ik(T ) for large T plays a significant role in the theory of the
Riemann zeta-function. For instance, the famous Lindelöf hypothesis states that for every
ε > 0 we have ζ(1/2 + it) = O(tε) for large t > 0. This hypothesis, if true, would tell us
about the location of the nontrivial zeros of ζ. Indeed, Backlund [1] showed that the Lindelöf
hypothesis is equivalent to the statement that for every ε > 0 the number of zeros ρ = σ+ it
of ζ with σ ≥ 1/2 + ε and T ≤ t ≤ T + 1 is o(log T ) as T → ∞. This is of course weaker
than the Riemann hypothesis which states that all the zeros ρ = σ+ it of ζ with σ ≥ 0 must
lie on the critical line σ = 1/2. In fact, Littlewood [15] proved that the Riemann hypothesis
implies that ζ(1/2 + it) = O(tC/ log log t) for large t > 0, where C is a positive constant, and it
has been shown by Chandee and Soundararajan [3] that one can take arbitrary C > log

√
2.

Such information would have important implications on the error term in the approximation
of the prime counting function π(x) by the logarithmic integral li(x) defined by

li(x) :=

∫ x

2

dt

log t
,

as well as on gaps between consecutive primes. On the other hand, Hardy and Littlewood
showed that the Lindelöf hypothesis is equivalent to the statement that for every ε > 0 and
every positive integer k ≥ 1 we have Ik(T ) = O(T 1+ε). These equivalences make the study
of higher moments of ζ on the critical line especially meaningful. Currently the Lindelöf
hypothesis is still open, though it is known that ζ(1/2 + it) = O(t

1
4 ) for large t > 0 (called

the “convexity bound”) and various results of the form ζ(1/2 + it) = O(tα(log t)β) with
0 < α < 1/4 have been obtained. See [20, Chapter V] for more details.

For k = 2, Hardy and Littlewood [7] showed by using the approximate functional equation
for ζ(s) that I2(T ) = O(T (log T )4). Using the approximate functional equation for ζ(s)2,
Ingham [12] proved the following asymptotic for I2(T ):

I2(T ) =
1

2π2
T (log T )4 +O(T (log T )3).

A proof of this result using (8) was found later by Titchmarsh [19]. Both proofs make use
of the following formula of Ramanujan [17]:∑

n≤x

d(n)2 =
1

π2
x(log x)3 +O(x(log x)2), (10)

where d(n) counts the number of positive divisors of n. The interested reader can find a
proof of this formula in the appendix. One important feature of Titchmarsh’s method is
that it can also be used to determine in a similar vein the asymptotics for the second and
fourth moments of

η(s) :=
∞∑
n=1

(−1)n−1

(2n− 1)s
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on σ = 1/2. Unfortunately, when k 6= 1, 2 no asymptotics for Ik(T ) are known. It is

conjectured that for any k > 0 one has Ik(T ) ∼ ckT (log T )k
2

for some constant ck > 0. It is
also conjectured that if k ≥ 1 is a positive integer, then

ck =
gkak

Γ(k2 + 1)
,

where gk is a positive integer and

ak =
∏
p

(
1− 1

p

)(k−1)2
(
k−1∑
l=0

(
k − 1

l

)2

p−l

)
.

The infinite product on the right side is easily seen to be convergent. Models from random
matrix theory seem to suggest that

gk = (k2)!
k−1∏
j=0

j!

(j + k)!
.

For example, for k = 2 we have

a2 =
∏
p

(
1− 1

p

)(
1 +

1

p

)
=

1

ζ(2)
=

6

π2

and g2 = 2. Thus c2 = 1/(2π2), which matches the coefficient of the main term in Ingham’s
asymptotic for I2(T ). It can be shown [4] that gk defined this way is indeed a positive integer
for every k ≥ 1. In fact, gk can be interpreted as the number of standard Young tableaux
of shape k × k (see [5]). Though a proof or disproof of the conjectured asymptotic above
seems elusive, much progress has been made toward sharp upper and lower bounds for Ik(T )
with k in certain ranges. For instance, it has been shown in [10] that if 0 ≤ k ≤ 2, then

Ik(T ) � T (log T )k
2

for T ≥ e. Assuming the Riemann hypothesis, Harper [9] proved that
this estimate holds for every k ≥ 0, refining an earlier result of Soundararajan [18]. As for
sharp lower bounds, Heap and Soundararajan [11] recently showed that for any large T and

any fixed δ > 0, we have Ik(T ) ≥ CkT (log T )k
2

uniformly for (log T )−
1
2 ≤ k ≤ (log T )

1
2
−δ,

where Ck > 0 is some constant. Thus for every k ≥ 0, one has Ik(T )� T (log T )k
2

for T ≥ e.

8. Appendix: Proof of Ramanujan’s Formula

We give a self-contained proof of Ramanujan’s formula (10). In the proof we shall see the
intimate connection between the Riemann zeta-function and various arithmetic functions.
The starting point is the following identity involving the generating function of d(n)2 [8,
Theorem 304]:

∞∑
n=1

d(n)2

ns
=
ζ(s)4

ζ(2s)
(11)

for s ∈ C with <(s) > 1. The proof of this identity is easy. Using the Euler product for ζ(s)
we obtain

ζ(s)4

ζ(2s)
=
∏
p

1− p−2s

(1− p−s)4
=
∏
p

1 + p−s

(1− p−s)3
.
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Note that

1 + p−s

(1− p−s)3
= (1 + p−s)

∞∑
k=0

(−1)k
(
−3

k

)
p−ks

= (1 + p−s)
∞∑
k=0

(k + 1)(k + 2)

2
p−ks

=
∞∑
k=0

(k + 1)2p−ks

=
∞∑
k=0

d(pk)2p−ks.

Since d(n) is multiplicative, we have

ζ(s)4

ζ(2s)
=
∏
p

∞∑
k=0

d(pk)2p−ks =
∞∑
n=1

d(n)2

ns

as desired. Next, we derive the Dirichlet series expansion of ζ(s)4/ζ(2s) in a different way.
Let dk(n) denote the number of representations of n as the product of k positive divisors of
n. Formally, we have

dk(n) := #{(d1, ..., dk) ∈ Nk : n = d1 · · · dk}.
Thus d1(n) = 1 and d2(n) = d(n). By Dirichlet convolution we have

ζ(s)4

ζ(2s)
=

(
∞∑
n=1

d4(n)

ns

)(
∞∑
n=1

µ(n)

n2s

)
=
∞∑
n=1

(∑
uv2=n

d4(u)µ(v)

)
1

ns

when <(s) > 1, where µ(n) is the Möbius function. Comparing this with (11) we obtain

d(n)2 =
∑
uv2=n

d4(u)µ(v). (12)

It is now clear that we need an asymptotic formula for the summatory function

Dk(x) :=
∑
n≤x

dk(n),

where k ≥ 2 is a positive integer. It turns out that we also need to estimate

Ek(x) :=
∑
n≤x

dk(n)

n
.

Note that

D2(x) =
∑
n≤x

d(n) =
∑
h≤x

⌊x
h

⌋
= x

∑
h≤x

1

h
+O(x) = x log x+O(x). (13)

More precise estimates for D2(x) are known, but this crude one will suffice for our purpose.
By partial summation we obtain

E2(x) =
D2(x)

x
+

∫ x

1

D2(t)

t2
dt =

1

2
(log x)2 +O(log x). (14)
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To deal with Dk(x) and Ek(x) for k ≥ 3, we make use of the following recursive formula:

dk(n) =
∑
h|n

dk−1(h),

where k ≥ 3. It follows that

Dk(x) =
∑
h≤x

⌊x
h

⌋
dk−1(h) = xEk−1(x) +O(Dk−1(x)),

Ek(x) =
Dk(x)

x
+

∫ x

1

Dk(t)

t2
dt,

where k ≥ 3. Combining these formulas with (13) and (14) we obtain by induction that

Dk(x) =
1

(k − 1)!
x(log x)k−1 +O(x(log x)k−2),

Ek(x) =
1

k!
(log x)k +O((log x)k−1),

where k ≥ 2. Now (10) can be derived from (11) by means of the above formula for Dk(x).
Indeed, we have∑

n≤x

d(n)2 =
∑
v≤
√
x

µ(v)D4

( x
v2

)
=

1

6
x
∑
v≤
√
x

µ(v)

v2

(
log

x

v2

)3
+O(x(log x)2).

Note that ∑
v≤
√
x

µ(v)

v2

(
log

x

v2

)3
= (log x)3

∑
v≤
√
x

µ(v)

v2
+O((log x)2).

Since ∑
v≤
√
x

µ(v)

v2
=

1

ζ(2)
+O

∑
v>
√
x

1

v2

 =
6

π2
+O(x−1/2),

we have ∑
v≤
√
x

µ(v)

v2

(
log

x

v2

)3
=

6

π2
(log x)3 +O((log x)2).

Hence ∑
n≤x

d(n)2 =
1

π2
x(log x)3 +O(x(log x)2).

This completes the proof of (10).
Dirichlet discovered the following refinement of (13) [8, Theorem 320]:

D2(x) =
∑
n≤x

d(n) = x log x+ (2γ − 1)x+O(
√
x).

The technique employed in his proof is now known as the Dirichlet hyperbola method, for the
reason that geometrically, the summation is arranged to be over the lattice points (a, b) ∈ N2

under the hyperbola ab = x. It is often very useful for estimating the summatory function of
the Dirichlet convolution of two arithmetic functions. The interested reader is referred to [13,
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Chapters 13 & 14] for more precise asymptotic formulas for Dk(x) and the sum
∑

n≤x d(n)2,
where the deep theory of the Riemann zeta-function is exploited.
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