THE ASYMPTOTIC FOR THE SECOND MOMENT OF $\zeta(s)$ ON THE CRITICAL LINE

STEVE FAN

Abstract. In 1918 Hardy and Littlewood [6] showed that

$$
I_{1}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \sim T \log T
$$

for sufficiently large $T>0$, where $\zeta(s)$ is the Riemann zeta-function. This short note is devoted to presenting a proof of this result using the technique of approximating $\zeta(s)$ by special Dirichlet polynomials. Our exposition is largely based on [14] with some adaptations. We shall also describe briefly Titchmarsh's proof of this asymptotic and discuss higher moments of $\zeta(s)$ on the critical line.

1. The Euler-Maclaurin Summation Formula

Let $f:[M, N] \rightarrow \mathbb{C}$ be a continuously differentiable function on $[M, N]$, where $N \geq M \geq 0$ are integers. The Euler-Maclaurin formula [14, Equ (2.1)] states

$$
\sum_{M<n \leq N} f(x)=\int_{M}^{N}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x+\frac{f(N)-f(M)}{2}
$$

where $\psi(x)=x-\lfloor x\rfloor-1 / 2=\{x\}-1 / 2$. Here $\lfloor x\rfloor$ denotes the integer part of x and $\{x\}=x-\lfloor x\rfloor$ the fractional part of x. The Euler-Maclaurin formula can be derived easily by integration by parts.

Suppose now that $[a, b] \subseteq[M, N]$ is a subinterval, where $a, b \in \mathbb{R}$. Then we have

$$
\begin{aligned}
\sum_{M<n \leq b} f(x) & =\int_{M}^{\lfloor b\rfloor}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x+\frac{f(\lfloor b\rfloor)-f(M)}{2} \\
& =\int_{M}^{\lfloor b\rfloor}\left(f(x)+\{x\} f^{\prime}(x)\right) d x .
\end{aligned}
$$

Note that

$$
\int_{\lfloor b\rfloor}^{b}\{x\} f^{\prime}(x) d x=\int_{\lfloor b\rfloor}^{b}(x-\lfloor b\rfloor) f^{\prime}(x) d x=\{b\} f(b)-\int_{\lfloor b\rfloor}^{b} f(x) d x .
$$

Hence

$$
\begin{aligned}
\sum_{M<n \leq b} f(x) & =\int_{M}^{b}\left(f(x)+\{x\} f^{\prime}(x)\right) d x-\{b\} f(b) \\
& =\int_{M}^{b}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x+\frac{f(b)-f(M)}{2}-\{b\} f(b)
\end{aligned}
$$

Similarly, we have

$$
\sum_{M<n \leq a} f(x)=\int_{M}^{a}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x+\frac{f(a)-f(M)}{2}-\{a\} f(a)
$$

It follows that

$$
\begin{align*}
\sum_{a<n \leq b} f(x) & =\int_{a}^{b}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x+\frac{f(b)-f(a)}{2}-(\{b\} f(b)-\{a\} f(a)) \\
& =\int_{a}^{b}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x-(\psi(b) f(b)-\psi(a) f(a)) \tag{1}
\end{align*}
$$

We shall apply this formula in the next section to estimate the sum $\sum_{a<n \leq b} n^{-s}$.

2. Technical Lemmas

In this section we prove two technical results needed for estimating the sum $\sum_{a<n \leq b} n^{-s}$. Such results are useful in estimating exponential sums of certain types. The author learned these results from [14, Chapter 2].

Lemma 2.1. Let $g:[a, b] \rightarrow \mathbb{R}$ be a twice continuously differentiable function on $[a, b]$ such that $g^{\prime}(x) g^{\prime \prime}(x) \neq 0$ for all $x \in[a, b]$. If $h:[a, b] \rightarrow \mathbb{C}$ is any continuously differentiable function on $[a, b]$, then

$$
\left|\int_{a}^{b} h(x) e^{2 \pi i g(x)} d x\right| \leq \frac{H}{\pi}\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}\right)
$$

where

$$
\begin{equation*}
H=\max (|h(a)|,|h(b)|)+\int_{a}^{b}\left|h^{\prime}(x)\right| d x . \tag{2}
\end{equation*}
$$

Proof. Since $g^{\prime \prime}(x)$ never vanishes on $[a, b]$, it follows that $g^{\prime}(x)$ is monotone on $[a, b]$. But $g^{\prime}(x) \neq 0$ for all $x \in[a, b]$. Thus $1 / g^{\prime}(x)$ and $\left|g^{\prime}(x)\right|$ are both monotone on $[a, b]$. Note that

$$
2 \pi i \int_{a}^{b} e^{2 \pi i g(x)} d x=\frac{e^{2 \pi i g(b)}}{g^{\prime}(b)}-\frac{e^{2 \pi i g(a)}}{g^{\prime}(a)}-\int_{a}^{b} e^{2 \pi i g(x)} d\left(\frac{1}{g^{\prime}(x)}\right)
$$

with

$$
\left|\int_{a}^{b} e^{2 \pi i g(x)} d\left(\frac{1}{g^{\prime}(x)}\right)\right| \leq\left|\int_{a}^{b} d\left(\frac{1}{g^{\prime}(x)}\right)\right|=\left|\frac{1}{g^{\prime}(b)}-\frac{1}{g^{\prime}(a)}\right| \leq \frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}
$$

Hence

$$
2 \pi\left|\int_{a}^{b} e^{2 \pi i g(x)} d x\right| \leq 2\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}\right)
$$

which gives

$$
\begin{equation*}
\left|\int_{a}^{b} e^{2 \pi i g(x)} d x\right| \leq \frac{1}{\pi}\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}\right) \tag{3}
\end{equation*}
$$

Suppose first that $\left|g^{\prime}(x)\right|$ is decreasing on $[a, b]$. By integration by parts we have

$$
\int_{a}^{b} h(x) e^{2 \pi i g(x)} d x=h(b) \int_{a}^{b} e^{2 \pi i g(x)} d x-\int_{a}^{b}\left(\int_{a}^{x} e^{2 \pi i g(y)} d y\right) h^{\prime}(x) d x
$$

It follows by (3) that

$$
\begin{aligned}
\left|\int_{a}^{b} h(x) e^{2 \pi i g(x)} d x\right| & \leq|h(b)|\left|\int_{a}^{b} e^{2 \pi i g(x)} d x\right|+\int_{a}^{b}\left|\int_{a}^{x} e^{2 \pi i g(y)} d y\right|\left|h^{\prime}(x)\right| d x \\
& \leq \frac{|h(b)|}{\pi}\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}\right)+\int_{a}^{b} \frac{1}{\pi}\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(x)\right|}\right)\left|h^{\prime}(x)\right| d x \\
& \leq \frac{1}{\pi}\left(|h(b)|+\int_{a}^{b}\left|h^{\prime}(x)\right| d x\right)\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}\right) .
\end{aligned}
$$

If $\left|g^{\prime}(x)\right|$ is increasing on $[a, b]$, we have

$$
\int_{a}^{b} h(x) e^{2 \pi i g(x)} d x=h(a) \int_{a}^{b} e^{2 \pi i g(x)} d x+\int_{a}^{b}\left(\int_{x}^{b} e^{2 \pi i g(y)} d y\right) h^{\prime}(x) d x
$$

By the same argument we obtain

$$
\left|\int_{a}^{b} h(x) e^{2 \pi i g(x)} d x\right| \leq \frac{1}{\pi}\left(|h(a)|+\int_{a}^{b}\left|h^{\prime}(x)\right| d x\right)\left(\frac{1}{\left|g^{\prime}(a)\right|}+\frac{1}{\left|g^{\prime}(b)\right|}\right)
$$

This completes the proof of the lemma.
Lemma 2.2. Let $\theta \in[0,1)$ and let $g:[a, b] \rightarrow \mathbb{R}$ be a twice continuously differentiable function on $[a, b]$ such that $\left|g^{\prime}(x)\right| \leq \theta$ and $g^{\prime \prime}(x) \neq 0$ for all $x \in[a, b]$. If $h:[a, b] \rightarrow \mathbb{C}$ is any continuously differentiable function on $[a, b]$, then

$$
\left|\int_{a}^{b} h(x) \psi(x) e^{2 \pi i g(x)} d x\right| \leq \frac{4 H}{\pi^{2}(1-\theta)}
$$

where H is defined as in (2).
Proof. Let $n \in \mathbb{Z} \backslash\{0\}$ be a nonzero integer. Applying Lemma 2.1 with $g(x)$ replaced by $g(x)+n x$ yields

$$
\begin{equation*}
\left|\int_{a}^{b} h(x) e^{2 \pi i(g(x)+n x)} d x\right| \leq \frac{2 H}{\pi(|n|-\theta)} \tag{4}
\end{equation*}
$$

The function $\psi(x)$ is piecewise linear on \mathbb{R}, periodic of period 1 , and smooth on $(n, n+1)$ for every $n \in \mathbb{Z}$ with jump discontinuities at integer points. Its Fourier expansion is

$$
\psi(x)=\sum_{0<|n| \leq N} \frac{e^{2 \pi i n x}}{2 \pi i n}+O\left(\frac{1}{1+\|x\| N}\right)
$$

where $N \geq 1$ and $\|x\|$ is the shortest distance of x to \mathbb{Z}. It follows by (4) that

$$
\left|\int_{a}^{b} h(x) \psi(x) e^{2 \pi i g(x)} d x\right| \leq \sum_{n=1}^{\infty} \frac{2 H}{\pi^{2} n(n-\theta)}+O\left(\int_{a}^{b} \frac{|h(x)|}{1+\|x\| N} d x\right)
$$

Since

$$
\sum_{n=1}^{\infty} \frac{2 H}{\pi^{2} n(n-\theta)} \leq \frac{2 H}{\pi^{2}(1-\theta)}\left(1+\sum_{n=2}^{\infty} \frac{1}{n(n-1)}\right)=\frac{4 H}{\pi^{2}(1-\theta)}
$$

we have

$$
\left|\int_{a}^{b} h(x) \psi(x) e^{2 \pi i g(x)} d x\right| \leq \frac{4 H}{\pi^{2}(1-\theta)}+O\left(\int_{a}^{b} \frac{|h(x)|}{1+\|x\| N} d x\right)
$$

We finish the proof of the lemma by letting $N \rightarrow \infty$.
Let $N \geq 1$ be a positive integer and let $T \in \mathbb{R}$ with $1 \leq T \leq N$. Let $s=\sigma+i t \in \mathbb{C}$ with $\sigma>0$ and $|t| \leq 2 T$. Applying (1) with $f(x)=h(x) e^{2 \pi i g(x)}$, where $h(x)=x^{-\sigma}$ and $g(x)=-(t / 2 \pi) \log x$, we obtain

$$
\sum_{T<n \leq N} \frac{1}{n^{s}}=\frac{T^{1-s}-N^{1-s}}{s-1}+\int_{T}^{N} \psi(x) f^{\prime}(x) d x+O\left(T^{-\sigma}\right)
$$

Note that

$$
\int_{T}^{N} \psi(x) f^{\prime}(x) d x=\int_{T}^{N} h^{\prime}(x) \psi(x) e^{2 \pi i g(x)} d x+2 \pi i \int_{T}^{N} h(x) g^{\prime}(x) \psi(x) e^{2 \pi i g(x)} d x .
$$

It is easily seen that

$$
\left|\int_{T}^{N} h^{\prime}(x) \psi(x) e^{2 \pi i g(x)} d x\right| \leq \frac{1}{2} \int_{T}^{N}\left|h^{\prime}(x)\right| d x<T^{-\sigma} .
$$

Let $h_{1}(x):=h(x) / x=x^{-\sigma-1}$. Then we have

$$
H_{1}:=\max \left(\left|h_{1}(T)\right|,\left|h_{1}(N)\right|\right)+\int_{T}^{N}\left|h_{1}^{\prime}(x)\right| d x<2 T^{-\sigma-1} .
$$

Since

$$
\left|g^{\prime}(x)\right|=\frac{|t|}{2 \pi x} \leq \frac{1}{\pi}<1
$$

for all $x \in[T, N]$, it follows by Lemma 2.2 that

$$
\left|2 \pi i \int_{T}^{N} h(x) g^{\prime}(x) \psi(x) e^{2 \pi i g(x)} d\right|=|t|\left|\int_{T}^{N} h_{1}(x) \psi(x) e^{2 \pi i g(x)} d\right| \ll|t| H_{1} \ll T^{-\sigma} .
$$

We have thus shown that

$$
\begin{equation*}
\sum_{T<n \leq N} \frac{1}{n^{s}}=\frac{T^{1-s}-N^{1-s}}{s-1}+O\left(T^{-\sigma}\right) \tag{5}
\end{equation*}
$$

3. An Approximation of $\zeta(s)$

Recall the Riemann zeta-function $\zeta(s)$ is originally defined by

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

for $s=\sigma+i t \in \mathbb{C}$ with $\sigma>1$. Let N be a positive integer. By partial summation we have

$$
\begin{aligned}
\sum_{n=N+1}^{\infty} \frac{1}{n^{s}} & =-\frac{1}{N^{s-1}}+s \int_{N}^{\infty} \frac{\lfloor x\rfloor}{x^{s+1}} d x \\
& =-\frac{1}{N^{s-1}}+s \int_{N}^{\infty} \frac{1}{x^{s}} d x-\frac{s}{2} \int_{N}^{\infty} \frac{1}{x^{s+1}} d x-s \int_{N}^{\infty} \frac{\psi(x)}{x^{s+1}} d x \\
& =\frac{N^{1-s}}{s-1}-\frac{N^{-s}}{2}-s(s+1) \int_{N}^{\infty}\left(\int_{N}^{x} \psi(y) d y\right) \frac{1}{x^{s+2}} d x
\end{aligned}
$$

where $\sigma>-1$. It is easily seen that

$$
\int_{N}^{\infty}\left(\int_{N}^{x} \psi(y) d y\right) \frac{1}{x^{s+2}} d x \ll \int_{N}^{\infty} \frac{1}{x^{\sigma+2}} d x=\frac{N^{-\sigma-1}}{\sigma+1}
$$

since $\psi(x)$ is periodic of period 1 and

$$
\int_{0}^{1} \psi(x) d x=0
$$

Hence

$$
\zeta(s)=\sum_{n \leq N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}-\frac{N^{-s}}{2}+O\left(\frac{|s(s+1)| N^{-\sigma-1}}{\sigma+1}\right)
$$

for $\sigma>-1$ and $N \geq 1$.
Suppose now that $\sigma>0$ and $|t| \leq 2 T$ with $1 \leq T \leq N$. By (5) we have

$$
\zeta(s)=\sum_{n \leq T} \frac{1}{n^{s}}+\frac{T^{1-s}}{s-1}-\frac{N^{-s}}{2}+O\left(\frac{|s(s+1)| N^{-\sigma-1}}{\sigma+1}\right)+O\left(T^{-\sigma}\right)
$$

We obtain the following result [14, Proposition 6.1] by letting $N \rightarrow \infty$.
Proposition 3.1. Let $T \geq 1$ and let $s=\sigma+i t \in \mathbb{C}$ with $\sigma>0$ and $|t| \leq 2 T$. Then

$$
\zeta(s)=\sum_{n \leq T} \frac{1}{n^{s}}+\frac{T^{1-s}}{s-1}+O\left(T^{-\sigma}\right)
$$

In particular, Proposition 3.1 implies that $\zeta(1+i t)=O(\log t)$ for large t. Taking $s=$ $1 / 2+i t$ we obtain the following simple approximation of $\zeta(s)$ on the critical line by its corresponding partial sum.
Corollary 3.2. Let $T \geq 1$ and let $\delta \in(0,2)$. Then

$$
\zeta(1 / 2+i t)=\sum_{n \leq T} \frac{1}{n^{1 / 2+i t}}+O\left(\delta^{-1} T^{-1 / 2}\right)
$$

for all $t \in \mathbb{R}$ with $\delta T \leq|t| \leq 2 T$.

4. The Mean Square of Dirichlet Polynomials

A Dirichlet polynomial $A_{N}(s)$ of length $N \geq 1$ is a complex-valued function of a complex variable $s=\sigma+i t$ of the form

$$
A_{N}(s):=\sum_{n=1}^{N} \frac{a_{n}}{n^{s}}
$$

with $a_{1}, \ldots, a_{n} \in \mathbb{C}$. We shall now prove the following result [14, Theorem 13.1] concerning the mean square of $A_{N}(s)$ over the interval $[0, T]$.

Proposition 4.1. For $T>0$ we have

$$
\int_{0}^{T}\left|A_{N}(s)\right|^{2} d t=T \sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}}+O\left(\left(\sum_{n=1}^{N} \frac{n^{2}\left|a_{n}\right|^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2}}\right)
$$

Proof. Let

$$
I(\sigma, T):=\int_{0}^{T}\left|A_{N}(s)\right|^{2} d t
$$

Note that

$$
I(\sigma, T)=\sum_{m, n=1}^{N} \frac{a_{m} \overline{a_{n}}}{(m n)^{\sigma}} \int_{0}^{T}\left(\frac{n}{m}\right)^{i t} d t=T \sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}}+\sum_{\substack{1 \leq m, n \leq N \\ m \neq n}} \frac{a_{m} \overline{a_{n}}}{(m n)^{\sigma}} \cdot \frac{(n / m)^{i T}-1}{i \log (n / m)} .
$$

By the mean value theorem we have

$$
\left|\log \frac{n}{m}\right| \geq \frac{|m-n|}{\max (m, n)}>\frac{|m-n|}{m+n}
$$

for every pair (m, n) with $1 \leq m \neq n \leq N$. Thus

$$
\sum_{\substack{1 \leq m, n \leq N \\ m \neq n}} \frac{a_{m} \overline{a_{n}}}{(m n)^{\sigma}} \cdot \frac{(n / m)^{i T}-1}{i \log (n / m)} \ll \sum_{\substack{1 \leq m, n \leq N \\ m \neq n}} \frac{\left|a_{m}\right|\left|a_{n}\right|}{(m n)^{\sigma}} \cdot \frac{m+n}{|m-n|}=2 \sum_{\substack{1 \leq m, n \leq N \\ m \neq n}} \frac{\left|a_{m}\right|\left|a_{n}\right|}{(m n)^{\sigma}} \cdot \frac{m}{|m-n|} .
$$

Now we invoke the following famous inequality of Hilbert:

$$
\left|\sum_{1 \leq m \neq n \leq N} \frac{a_{m} \overline{b_{n}}}{m-n}\right| \leq \pi\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N}\left|b_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

where $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N} \in \mathbb{C}$. Replacing a_{n} with $\left|a_{n}\right| / n^{\sigma-1}$ and b_{n} with $\left|a_{n}\right| / n^{\sigma}$ in Hilbert's inequality, we obtain

$$
\sum_{\substack{1 \leq m, n \leq N \\ m \neq n}} \frac{\left|a_{m}\right|\left|a_{n}\right|}{(m n)^{\sigma}} \cdot \frac{m}{|m-n|} \leq \pi\left(\sum_{n=1}^{N} \frac{n^{2}\left|a_{n}\right|^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2}}
$$

Hence

$$
I(\sigma, T)=T \sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}}+O\left(\left(\sum_{n=1}^{N} \frac{n^{2}\left|a_{n}\right|^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2}}\right)
$$

This completes the proof.
We obtain the following result [14, Corollary 13.2] as a corollary of Proposition 4.1.
Corollary 4.2. For $T>0$ we have

$$
\int_{0}^{T}\left|A_{N}(s)\right|^{2} d t=(T+O(N)) \sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{n^{2 \sigma}} .
$$

Remark 4.1. To make our exposition as self-contained as possible, we give here a short proof of Hilbert's inequality used in the proof of Proposition 4.1. In fact, we shall prove that if a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are two sequences of complex numbers, and if m_{1}, \ldots, m_{n} are pairwise distinct integers, then

$$
\left|\sum_{1 \leq k \neq l \leq n} \frac{a_{k} \overline{b_{l}}}{m_{k}-m_{l}}\right| \leq \pi\left(\sum_{k=1}^{n}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left|b_{k}\right|^{2}\right)^{\frac{1}{2}} .
$$

Note that for any $c \in \mathbb{Z} \backslash\{0\}$,

$$
\frac{i}{2 \pi} \int_{0}^{2 \pi}(x-\pi) e^{i c x} d x=\frac{1}{c}
$$

Thus we have

$$
\left|\sum_{1 \leq k \neq l \leq n} \frac{a_{k} \overline{b_{l}}}{m_{k}-m_{l}}\right|=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi}(x-\pi) \sum_{1 \leq k \neq l \leq n} a_{k} \overline{b_{l}} e^{i\left(m_{k}-m_{l}\right) x} d x\right|
$$

Since

$$
\int_{0}^{2 \pi}(x-\pi) d x=0
$$

it follows that

$$
\left|\sum_{1 \leq k \neq l \leq n} \frac{a_{k} \overline{b_{l}}}{m_{k}-m_{l}}\right|=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi}(x-\pi) \sum_{k=1}^{n} a_{k} e^{i m_{k} x} \sum_{k=1}^{n} \overline{b_{k}} e^{-i m_{k} x} d x\right| .
$$

By Cauchy-Schwarz inequality, the right side is

$$
\begin{aligned}
& \leq \frac{1}{2 \pi}\left(\int_{0}^{2 \pi}(x-\pi)^{2}\left|\sum_{k=1}^{n} a_{k} e^{i m_{k} x}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{0}^{2 \pi}\left|\sum_{k=1}^{n} b_{k} e^{i m_{k} x}\right|^{2} d x\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2}\left(\int_{0}^{2 \pi}\left|\sum_{k=1}^{n} a_{k} e^{i m_{k} x}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{0}^{2 \pi}\left|\sum_{k=1}^{n} b_{k} e^{i m_{k} x}\right|^{2} d x\right)^{\frac{1}{2}} \\
& =\pi\left(\sum_{k=1}^{n}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left|b_{k}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

This completes the proof. Further generalizations of Hilbert's inequality have been discovered by Montgomery and Vaughan [16].

For a different proof of Proposition 4.1, see [14, Theorem 13.1].

5. The Second Moment of $\zeta(1 / 2+i t)$

We are now ready to prove the following theorem [6, Theorem 2.41] concerning the mean square of $\zeta(s)$ on the critical line.
Theorem 5.1. For large $T>0$ we have

$$
I_{1}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \sim T \log T
$$

Proof. Let $m:=\lfloor\log T / \log 2\rfloor$ and let $T_{k}:=T / 2^{k}$ for $0 \leq k \leq m+1$. Then $T_{k} \geq 1$ for all $0 \leq k \leq m$. For $t \in \mathbb{R}$ with $T_{k+1}<t \leq T_{k}$, we have by Corollary 3.2 that

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}=\left|\sum_{n \leq T_{k}} \frac{1}{n^{1 / 2+i t}}\right|^{2}+O(1)
$$

since

$$
\sum_{n \leq T_{k}} \frac{1}{n^{1 / 2+i t}} \ll \sum_{n \leq T_{k}} \frac{1}{n^{1 / 2}} \ll \sqrt{T_{k}}
$$

By Proposition 4.1 we have

$$
\begin{aligned}
\int_{T_{k+1}}^{T_{k}}\left|\sum_{n \leq T_{k}} \frac{1}{n^{1 / 2+i t}}\right|^{2} d t & =\int_{0}^{T_{k+1}}\left|\sum_{n \leq T_{k}} \frac{n^{-i T_{k+1}}}{n^{1 / 2+i t}}\right|^{2} d t \\
& =T_{k+1} \sum_{n \leq T_{k}} \frac{1}{n}+O\left(\left(\sum_{n \leq T_{k}} n\right)^{\frac{1}{2}}\left(\sum_{n \leq T_{k}} \frac{1}{n}\right)^{\frac{1}{2}}\right) \\
& =T_{k+1} \log T_{k}+O\left(T_{k}(\log T)^{\frac{1}{2}}\right)
\end{aligned}
$$

Hence

$$
\int_{T_{m+1}}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=\sum_{k=0}^{m} T_{k+1} \log T_{k}+O\left(T(\log T)^{\frac{1}{2}}\right) .
$$

Since $m+1>\log T / \log 2$, we have

$$
\sum_{k=0}^{m} T_{k+1} \log T_{k}=\sum_{k=0}^{m} \frac{T \log T}{2^{k+1}}+O(T)=\left(1-\frac{1}{2^{m+1}}\right) T \log T+O(T)=T \log T+O(T)
$$

It follows that

$$
\int_{T_{m+1}}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=T \log T+O(T)
$$

But $T_{m+1}=T / 2^{m+1}<1$ implies

$$
\int_{0}^{T_{m+1}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=O(1)
$$

Therefore, we conclude that

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=T \log T+O\left(T(\log T)^{\frac{1}{2}}\right)
$$

This completes the proof.
Remark 5.1. More precise asymptotics for $I_{1}(T)$ are known. For instance, one can show [20, Theorem 7.4] that

$$
I_{1}(T)=T \log T+(2 \gamma-1-\log 2 \pi) T+O\left(T^{1 / 2+\epsilon}\right)
$$

for any given $\epsilon>0$, where γ is Euler's constant. Balasubramanian [2] further reduced the exponent $1 / 2$ in the error term down to $1 / 3$.

6. Titchmarsh's Approach

In 1927 Titchmarsh [19] gave a proof of Theorem 5.1 using tools from Fourier analysis without much reference to deep properties of $\zeta(s)$. Here we describe briefly the main ideas behind his proof. Recall that for any function $f(x) \in L^{1}(\mathbb{R})$, the Fourier transform $F(\xi)$ of f is defined by

$$
F(\xi):=\int_{-\infty}^{+\infty} f(x) e^{-2 \pi i \xi x} d x
$$

The well-known Plancherel's formula states that if $f(x), g(x) \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ with Fourier transforms $F(\xi)$ and $G(\xi)$, respectively, then

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x) \overline{g(x)} d x=\int_{-\infty}^{+\infty} F(\xi) \overline{G(\xi)} d \xi \tag{6}
\end{equation*}
$$

In particular, one has

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\int_{-\infty}^{+\infty}|F(\xi)|^{2} d \xi \tag{7}
\end{equation*}
$$

Let $\eta \in \mathbb{R}$ be a real variable independent of x and ξ. Since the Fourier transform of $f(x) e^{2 \pi i \eta x}$ is $F(\xi-\eta)$, it follows by (6) that

$$
\int_{-\infty}^{+\infty}|f(x)|^{2} e^{-2 \pi i \eta x} d x=\int_{-\infty}^{+\infty} F(\xi) \overline{F(\xi-\eta)} d \xi
$$

This means that the Fourier transform of $|f(x)|^{2}$ is

$$
\int_{-\infty}^{+\infty} F(\xi) \overline{F(\xi-\eta)} d \xi=\int_{-\infty}^{+\infty} F(\xi+\eta) \overline{F(\xi)} d \xi
$$

By (7) we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|f(x)|^{4} d x=\int_{-\infty}^{+\infty}\left|\int_{-\infty}^{+\infty} F(\xi+\eta) \overline{F(\xi)} d \xi\right|^{2} d \eta \tag{8}
\end{equation*}
$$

Now we consider the Riemann zeta-function $\zeta(s)$. We begin with the Cahen-Mellin integral

$$
e^{-z}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma(s) z^{-s} d s
$$

valid for $z \in \mathbb{C}$ with $\Re(z)>0$ and $c>0$, where

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

For $c>1$ we have

$$
\frac{1}{e^{z}-1}=\sum_{n=1}^{\infty} e^{-n z}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma(s) \zeta(s) z^{-s} d s
$$

where the interchange of summation and integration is easily justified using Stirling's formula. Moving the line of integration to $\Re(s)=1 / 2$ and taking into account the simple pole of the intergrand at $s=1$ with residue $1 / z$, we obtain

$$
\frac{1}{e^{z}-1}-\frac{1}{z}=\frac{1}{2 \pi i} \int_{1 / 2-i \infty}^{1 / 2+i \infty} \Gamma(s) \zeta(s) z^{-s} d s=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Gamma\left(\frac{1}{2}+i t\right) \zeta\left(\frac{1}{2}+i t\right) z^{-1 / 2-i t} d t .
$$

Taking $z=i e^{2 \pi \xi-i \delta}$ with $0<\delta<1$, we have

$$
\frac{1}{\exp \left(i e^{2 \pi \xi-i \delta}\right)-1}-\frac{1}{i e^{2 \pi \xi-i \delta}}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Gamma\left(\frac{1}{2}+i t\right) \zeta\left(\frac{1}{2}+i t\right) e^{-\pi \xi-i(\pi / 2-\delta)(1 / 2+i t)} e^{-2 \pi i \xi t} d t
$$

This shows that the Fourier transform of

$$
\frac{1}{2 \pi} \Gamma\left(\frac{1}{2}+i t\right) \zeta\left(\frac{1}{2}+i t\right) e^{-i(\pi / 2-\delta)(1 / 2+i t)}
$$

is

$$
e^{\pi \xi}\left(\frac{1}{\exp \left(i e^{2 \pi \xi-i \delta}\right)-1}-\frac{1}{i e^{2 \pi \xi-i \delta}}\right)
$$

Applying (7) we obtain $L(\delta)=R(\delta)$, where

$$
\begin{aligned}
& L(\delta)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{+\infty}\left|\Gamma\left(\frac{1}{2}+i t\right)\right|^{2}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} e^{(\pi-2 \delta) t} d t \\
& R(\delta)=\int_{-\infty}^{+\infty} e^{2 \pi \xi}\left|\frac{1}{\exp \left(i e^{2 \pi \xi-i \delta}\right)-1}-\frac{1}{i e^{2 \pi \xi-i \delta}}\right|^{2} d \xi
\end{aligned}
$$

By Euler's reflection formula we have

$$
\left|\Gamma\left(\frac{1}{2}+i t\right)\right|^{2}=\Gamma\left(\frac{1}{2}+i t\right) \Gamma\left(\frac{1}{2}-i t\right)=\frac{\pi}{\sin \pi(1 / 2+i t)}=\frac{\pi}{\cosh \pi t} .
$$

Since

$$
\frac{1}{\cosh \pi t}=\frac{2}{e^{\pi t}+e^{-\pi t}}=\frac{2 e^{-\pi|t|}}{1+e^{-2 \pi|t|}}=2 e^{-\pi|t|}\left(1-\frac{e^{-2 \pi|t|}}{1+e^{-2 \pi|t|}}\right)=2 e^{-\pi|t|}\left(1+O\left(e^{-2 \pi|t|}\right)\right)
$$

it follows that

$$
\left|\Gamma\left(\frac{1}{2}+i t\right)\right|^{2}=2 \pi e^{-\pi|t|}+O\left(e^{-3 \pi|t|}\right)
$$

Thus we have

$$
L(\delta)=\frac{1}{2 \pi} \int_{0}^{\infty}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} e^{-2 \delta t} d t+O\left(\int_{0}^{\infty}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} e^{-2(\pi-\delta) t} d t\right)
$$

Note that

$$
\zeta(s)=s \int_{1}^{\infty} \frac{\lfloor x\rfloor}{x^{s+1}} d x=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

for $s=\sigma+i t \in \mathbb{C}$ with $\sigma>0$. Taking $\sigma=1 / 2$ we see that $\zeta(1 / 2+i t)=O((1+|t|))$. Hence

$$
L(\delta)=\frac{1}{2 \pi} \int_{0}^{\infty}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} e^{-2 \delta t} d t+O(1)
$$

A Tauberian result [6, Lemma 2.413] implies that Theorem 5.1 is equivalent to the following theorem [19, Theorem I].

Theorem 6.1. As $\delta \rightarrow 0^{+}$we have

$$
\int_{0}^{\infty}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} e^{-\delta t} d t \sim \frac{1}{\delta} \log \frac{1}{\delta}
$$

Consequently, our original task of proving Theorem 5.1 is reduced to the estimation of $R(\delta)$ with the goal of showing that

$$
\begin{equation*}
R(\delta) \sim \frac{1}{4 \pi \delta} \log \frac{1}{\delta} \tag{9}
\end{equation*}
$$

as $\delta \rightarrow 0^{+}$. Performing the substitution $\eta=e^{2 \pi \xi}$ we get

$$
\begin{aligned}
R(\delta) & =\frac{1}{2 \pi} \int_{0}^{\infty}\left|\frac{1}{\exp \left(i \eta e^{-i \delta}\right)-1}-\frac{1}{i \eta e^{-i \delta}}\right|^{2} d \eta \\
& =\frac{1}{2 \pi} \int_{\pi}^{\infty}\left|\frac{1}{\exp \left(i \eta e^{-i \delta}\right)-1}-\frac{1}{i \eta e^{-i \delta}}\right|^{2} d \eta+O(1)
\end{aligned}
$$

since $1 /\left(e^{z}-1\right)-1 / z$ is analytic in $|z|<2 \pi$. Expand out the integrand and observe that the main contribution comes from the term

$$
\frac{1}{2 \pi} \int_{\pi}^{\infty}\left|\frac{1}{\exp \left(i \eta e^{-i \delta}\right)-1}\right|^{2} d \eta=\frac{1}{2 \pi} \int_{\pi}^{\infty} \frac{d \eta}{\left(1-\exp \left(i \eta e^{-i \delta}\right)\right)\left(1-\exp \left(-i \eta e^{i \delta}\right)\right)}
$$

Note that $\left|\exp \left(-i \eta e^{-i \delta}\right)\right|=\left|\exp \left(i \eta e^{i \delta}\right)\right|=e^{-\eta \sin \delta}<1$ when $0<\delta<1$. Using the power series expansion $z /(z-1)=\sum_{n=1}^{\infty} z^{n}$ valid for $|z|<1$ we get

$$
\frac{1}{\left(1-\exp \left(i \eta e^{-i \delta}\right)\right)\left(1-\exp \left(-i \eta e^{i \delta}\right)\right)}=\sum_{m, n=1}^{\infty} \exp \left(-i m \eta e^{-i \delta}+i n \eta e^{i \delta}\right)
$$

The contribution from the diagonal terms gives

$$
\frac{1}{2 \pi} \int_{\pi}^{\infty} \sum_{n=1}^{\infty} e^{-2 n \eta \sin \delta} d \eta=\frac{1}{2 \pi} \int_{\pi}^{\infty} \frac{e^{-2 \eta \sin \delta}}{1-e^{-2 \eta \sin \delta}} d \eta \sim \frac{1}{4 \pi \delta} \int_{\pi}^{\infty} \frac{e^{-2 \eta \sin \delta}}{\eta} d \eta
$$

By integration by parts we obtain

$$
\int_{\pi}^{\infty} \frac{e^{-2 \eta \sin \delta}}{\eta} d \eta=\int_{2 \pi \sin \delta}^{\infty} \frac{e^{-\eta}}{\eta} d \eta=-e^{-2 \pi \sin \delta} \log (2 \pi \sin \delta)+\int_{2 \pi \sin \delta}^{\infty} e^{-\eta} \log \eta d \eta
$$

Since the improper integral

$$
\int_{0}^{\infty} e^{-\eta} \log \eta d \eta=\int_{0}^{1} e^{-\eta} \log \eta d \eta+\int_{1}^{\infty} e^{-\eta} \log \eta d \eta
$$

is absolutely convergent, we have

$$
\int_{\pi}^{\infty} \frac{e^{-2 \eta \sin \delta}}{\eta} d \eta=-e^{-2 \pi \sin \delta} \log \sin \delta+O(1) \sim \log \frac{1}{\delta}
$$

This leads to

$$
\frac{1}{2 \pi} \int_{\pi}^{\infty} \sum_{n=1}^{\infty} e^{-2 n \eta \sin \delta} d \eta \sim \frac{1}{4 \pi \delta} \log \frac{1}{\delta}
$$

On the other hand, it is not hard to show that the contribution from the off-diagonal terms

$$
\frac{1}{2 \pi} \sum_{\substack{m, n=1 \\ m \neq n}}^{\infty} \int_{\pi}^{\infty} \exp \left(-i m \eta e^{-i \delta}+i n \eta e^{i \delta}\right) d \eta=\frac{1}{2 \pi} \sum_{\substack{m, n=1 \\ m \neq n}}^{\infty} \frac{\exp (-(m+n) \pi \sin \delta-i(m-n) \pi \cos \delta)}{(m+n) \pi \sin \delta+i(m-n) \pi \cos \delta}
$$

is $O\left(\delta^{-1}\right)$. This proves (9). The reader is referred to [19, Theorem I] for further details.

7. Concluding Remarks

More generally, one can study the $2 k$-th moment of $\zeta(s)$ on the critical line defined by

$$
I_{k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

for any $k>0$. The study of $I_{k}(T)$ for large T plays a significant role in the theory of the Riemann zeta-function. For instance, the famous Lindelöf hypothesis states that for every $\epsilon>0$ we have $\zeta(1 / 2+i t)=O\left(t^{\epsilon}\right)$ for large $t>0$. This hypothesis, if true, would tell us about the location of the nontrivial zeros of ζ. Indeed, Backlund [1] showed that the Lindelöf hypothesis is equivalent to the statement that for every $\epsilon>0$ the number of zeros $\rho=\sigma+i t$ of ζ with $\sigma \geq 1 / 2+\epsilon$ and $T \leq t \leq T+1$ is $o(\log T)$ as $T \rightarrow \infty$. This is of course weaker than the Riemann hypothesis which states that all the zeros $\rho=\sigma+$ it of ζ with $\sigma \geq 0$ must lie on the critical line $\sigma=1 / 2$. In fact, Littlewood [15] proved that the Riemann hypothesis implies that $\zeta(1 / 2+i t)=O\left(t^{C / \log \log t}\right)$ for large $t>0$, where C is a positive constant, and it has been shown by Chandee and Soundararajan [3] that one can take arbitrary $C>\log \sqrt{2}$. Such information would have important implications on the error term in the approximation of the prime counting function $\pi(x)$ by the logarithmic integral $\operatorname{li}(x)$ defined by

$$
\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}
$$

as well as on gaps between consecutive primes. On the other hand, Hardy and Littlewood showed that the Lindelöf hypothesis is equivalent to the statement that for every $\epsilon>0$ and every positive integer $k \geq 1$ we have $I_{k}(T)=O\left(T^{1+\epsilon}\right)$. These equivalences make the study of higher moments of ζ on the critical line especially meaningful. Currently the Lindelöf hypothesis is still open, though it is known that $\zeta(1 / 2+i t)=O\left(t^{\frac{1}{4}}\right)$ for large $t>0$ (called the "convexity bound") and various results of the form $\zeta(1 / 2+i t)=O\left(t^{\alpha}(\log t)^{\beta}\right)$ with $0<\alpha<1 / 4$ have been obtained. See [20, Chapter V] for more details.

For $k=2$, Hardy and Littlewood [7] showed by using the approximate functional equation for $\zeta(s)$ that $I_{2}(T)=O\left(T(\log T)^{4}\right)$. Using the approximate functional equation for $\zeta(s)^{2}$, Ingham [12] proved the following asymptotic for $I_{2}(T)$:

$$
I_{2}(T)=\frac{1}{2 \pi^{2}} T(\log T)^{4}+O\left(T(\log T)^{3}\right)
$$

A proof of this result using (8) was found later by Titchmarsh [19]. Both proofs make use of the following formula of Ramanujan [17]:

$$
\begin{equation*}
\sum_{n \leq x} d(n)^{2}=\frac{1}{\pi^{2}} x(\log x)^{3}+O\left(x(\log x)^{2}\right) \tag{10}
\end{equation*}
$$

where $d(n)$ counts the number of positive divisors of n. The interested reader can find a proof of this formula in the appendix. One important feature of Titchmarsh's method is that it can also be used to determine in a similar vein the asymptotics for the second and fourth moments of

$$
\eta(s):=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)^{s}}
$$

on $\sigma=1 / 2$. Unfortunately, when $k \neq 1,2$ no asymptotics for $I_{k}(T)$ are known. It is conjectured that for any $k>0$ one has $I_{k}(T) \sim c_{k} T(\log T)^{k^{2}}$ for some constant $c_{k}>0$. It is also conjectured that if $k \geq 1$ is a positive integer, then

$$
c_{k}=\frac{g_{k} a_{k}}{\Gamma\left(k^{2}+1\right)},
$$

where g_{k} is a positive integer and

$$
a_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{(k-1)^{2}}\left(\sum_{l=0}^{k-1}\binom{k-1}{l}^{2} p^{-l}\right) .
$$

The infinite product on the right side is easily seen to be convergent. Models from random matrix theory seem to suggest that

$$
g_{k}=\left(k^{2}\right)!\prod_{j=0}^{k-1} \frac{j!}{(j+k)!} .
$$

For example, for $k=2$ we have

$$
a_{2}=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}\right)=\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}
$$

and $g_{2}=2$. Thus $c_{2}=1 /\left(2 \pi^{2}\right)$, which matches the coefficient of the main term in Ingham's asymptotic for $I_{2}(T)$. It can be shown [4] that g_{k} defined this way is indeed a positive integer for every $k \geq 1$. In fact, g_{k} can be interpreted as the number of standard Young tableaux of shape $k \times k$ (see [5]). Though a proof or disproof of the conjectured asymptotic above seems elusive, much progress has been made toward sharp upper and lower bounds for $I_{k}(T)$ with k in certain ranges. For instance, it has been shown in [10] that if $0 \leq k \leq 2$, then $I_{k}(T) \ll T(\log T)^{k^{2}}$ for $T \geq e$. Assuming the Riemann hypothesis, Harper [9] proved that this estimate holds for every $k \geq 0$, refining an earlier result of Soundararajan [18]. As for sharp lower bounds, Heap and Soundararajan [11] recently showed that for any large T and any fixed $\delta>0$, we have $I_{k}(T) \geq C_{k} T(\log T)^{k^{2}}$ uniformly for $(\log T)^{-\frac{1}{2}} \leq k \leq(\log T)^{\frac{1}{2}-\delta}$, where $C_{k}>0$ is some constant. Thus for every $k \geq 0$, one has $I_{k}(T) \gg T(\log T)^{k^{2}}$ for $T \geq e$.

8. Appendix: Proof of Ramanujan's Formula

We give a self-contained proof of Ramanujan's formula (10). In the proof we shall see the intimate connection between the Riemann zeta-function and various arithmetic functions. The starting point is the following identity involving the generating function of $d(n)^{2}[8$, Theorem 304]:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{d(n)^{2}}{n^{s}}=\frac{\zeta(s)^{4}}{\zeta(2 s)} \tag{11}
\end{equation*}
$$

for $s \in \mathbb{C}$ with $\Re(s)>1$. The proof of this identity is easy. Using the Euler product for $\zeta(s)$ we obtain

$$
\frac{\zeta(s)^{4}}{\zeta(2 s)}=\prod_{p} \frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{4}}=\prod_{p} \frac{1+p^{-s}}{\left(1-p^{-s}\right)^{3}} .
$$

Note that

$$
\begin{aligned}
\frac{1+p^{-s}}{\left(1-p^{-s}\right)^{3}} & =\left(1+p^{-s}\right) \sum_{k=0}^{\infty}(-1)^{k}\binom{-3}{k} p^{-k s} \\
& =\left(1+p^{-s}\right) \sum_{k=0}^{\infty} \frac{(k+1)(k+2)}{2} p^{-k s} \\
& =\sum_{k=0}^{\infty}(k+1)^{2} p^{-k s} \\
& =\sum_{k=0}^{\infty} d\left(p^{k}\right)^{2} p^{-k s}
\end{aligned}
$$

Since $d(n)$ is multiplicative, we have

$$
\frac{\zeta(s)^{4}}{\zeta(2 s)}=\prod_{p} \sum_{k=0}^{\infty} d\left(p^{k}\right)^{2} p^{-k s}=\sum_{n=1}^{\infty} \frac{d(n)^{2}}{n^{s}}
$$

as desired. Next, we derive the Dirichlet series expansion of $\zeta(s)^{4} / \zeta(2 s)$ in a different way. Let $d_{k}(n)$ denote the number of representations of n as the product of k positive divisors of n. Formally, we have

$$
d_{k}(n):=\#\left\{\left(d_{1}, \ldots, d_{k}\right) \in \mathbb{N}^{k}: n=d_{1} \cdots d_{k}\right\}
$$

Thus $d_{1}(n)=1$ and $d_{2}(n)=d(n)$. By Dirichlet convolution we have

$$
\frac{\zeta(s)^{4}}{\zeta(2 s)}=\left(\sum_{n=1}^{\infty} \frac{d_{4}(n)}{n^{s}}\right)\left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2 s}}\right)=\sum_{n=1}^{\infty}\left(\sum_{u v^{2}=n} d_{4}(u) \mu(v)\right) \frac{1}{n^{s}}
$$

when $\Re(s)>1$, where $\mu(n)$ is the Möbius function. Comparing this with (11) we obtain

$$
\begin{equation*}
d(n)^{2}=\sum_{u v^{2}=n} d_{4}(u) \mu(v) \tag{12}
\end{equation*}
$$

It is now clear that we need an asymptotic formula for the summatory function

$$
D_{k}(x):=\sum_{n \leq x} d_{k}(n)
$$

where $k \geq 2$ is a positive integer. It turns out that we also need to estimate

$$
E_{k}(x):=\sum_{n \leq x} \frac{d_{k}(n)}{n}
$$

Note that

$$
\begin{equation*}
D_{2}(x)=\sum_{n \leq x} d(n)=\sum_{h \leq x}\left\lfloor\frac{x}{h}\right\rfloor=x \sum_{h \leq x} \frac{1}{h}+O(x)=x \log x+O(x) . \tag{13}
\end{equation*}
$$

More precise estimates for $D_{2}(x)$ are known, but this crude one will suffice for our purpose. By partial summation we obtain

$$
\begin{equation*}
E_{2}(x)=\frac{D_{2}(x)}{x}+\int_{1}^{x} \frac{D_{2}(t)}{t^{2}} d t=\frac{1}{2}(\log x)^{2}+O(\log x) . \tag{14}
\end{equation*}
$$

To deal with $D_{k}(x)$ and $E_{k}(x)$ for $k \geq 3$, we make use of the following recursive formula:

$$
d_{k}(n)=\sum_{h \mid n} d_{k-1}(h),
$$

where $k \geq 3$. It follows that

$$
\begin{aligned}
& D_{k}(x)=\sum_{h \leq x}\left\lfloor\frac{x}{h}\right\rfloor d_{k-1}(h)=x E_{k-1}(x)+O\left(D_{k-1}(x)\right) \\
& E_{k}(x)=\frac{D_{k}(x)}{x}+\int_{1}^{x} \frac{D_{k}(t)}{t^{2}} d t
\end{aligned}
$$

where $k \geq 3$. Combining these formulas with (13) and (14) we obtain by induction that

$$
\begin{aligned}
& D_{k}(x)=\frac{1}{(k-1)!} x(\log x)^{k-1}+O\left(x(\log x)^{k-2}\right) \\
& E_{k}(x)=\frac{1}{k!}(\log x)^{k}+O\left((\log x)^{k-1}\right)
\end{aligned}
$$

where $k \geq 2$. Now (10) can be derived from (11) by means of the above formula for $D_{k}(x)$. Indeed, we have

$$
\sum_{n \leq x} d(n)^{2}=\sum_{v \leq \sqrt{x}} \mu(v) D_{4}\left(\frac{x}{v^{2}}\right)=\frac{1}{6} x \sum_{v \leq \sqrt{x}} \frac{\mu(v)}{v^{2}}\left(\log \frac{x}{v^{2}}\right)^{3}+O\left(x(\log x)^{2}\right)
$$

Note that

$$
\sum_{v \leq \sqrt{x}} \frac{\mu(v)}{v^{2}}\left(\log \frac{x}{v^{2}}\right)^{3}=(\log x)^{3} \sum_{v \leq \sqrt{x}} \frac{\mu(v)}{v^{2}}+O\left((\log x)^{2}\right)
$$

Since

$$
\sum_{v \leq \sqrt{x}} \frac{\mu(v)}{v^{2}}=\frac{1}{\zeta(2)}+O\left(\sum_{v>\sqrt{x}} \frac{1}{v^{2}}\right)=\frac{6}{\pi^{2}}+O\left(x^{-1 / 2}\right)
$$

we have

$$
\sum_{v \leq \sqrt{x}} \frac{\mu(v)}{v^{2}}\left(\log \frac{x}{v^{2}}\right)^{3}=\frac{6}{\pi^{2}}(\log x)^{3}+O\left((\log x)^{2}\right)
$$

Hence

$$
\sum_{n \leq x} d(n)^{2}=\frac{1}{\pi^{2}} x(\log x)^{3}+O\left(x(\log x)^{2}\right)
$$

This completes the proof of (10).
Dirichlet discovered the following refinement of (13) [8, Theorem 320]:

$$
D_{2}(x)=\sum_{n \leq x} d(n)=x \log x+(2 \gamma-1) x+O(\sqrt{x})
$$

The technique employed in his proof is now known as the Dirichlet hyperbola method, for the reason that geometrically, the summation is arranged to be over the lattice points $(a, b) \in \mathbb{N}^{2}$ under the hyperbola $a b=x$. It is often very useful for estimating the summatory function of the Dirichlet convolution of two arithmetic functions. The interested reader is referred to [13,

Chapters $13 \& 14]$ for more precise asymptotic formulas for $D_{k}(x)$ and the sum $\sum_{n \leq x} d(n)^{2}$, where the deep theory of the Riemann zeta-function is exploited.

References

[1] R. Backlund, Über die Beziehung zwischen Anwachsen und Nullstellen der Zeta-Funktion, Öfversigt Finska Vetensk. Soc. 61 (9) (1918/19).
[2] R. Balasubramanian, An improvement on a theorem of Titchmarsh on the mean square of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$, Proc. London Math. Soc. 36 (3) (1978), 540-576.
[3] V. Chandee and K. Soundararajan, Bounding $|\zeta(1 / 2+i t)|$ on the Riemann hypothesis, Bull. London Math. Soc. 43 (2) (2011), 243-250.
[4] J. B. Conrey and D. W. Farmer, Mean values of L-functions and symmetry, Int. Math. Res. Not. 17 (2000), 883-908.
[5] P.-O. Dehaye, Combinatorics of lower order terms in the moment conjectures for the Riemann zeta function. 2012, https://arxiv.org/abs/1201.4478.
[6] G. H. Hardy and J.E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes, Acta Math. 41 (1918), 119-196.
[7] G. H. Hardy and J.E. Littlewood, The approximate functional equation in the theory of the zetafunctions, with applications to the divisor-problems of Dirichlet and Piltz, Proc. London Math. Soc. 21 (2) (1923), 39-74.
[8] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th. ed., Oxford Univ. Press, Oxford, 2008. Revised by D.R. Heath-Brown and J.H. Silverman; With a forward by A. J. Wiles.
[9] A. J. Harper, Sharp conditional bounds for moments of the Riemann zeta function. 2013, https://arxiv.org/abs/1305.4618.
[10] W. Heap, M. Radziwiłł, and K. Soundararajan, Sharp upper bounds for fractional moments of the Riemann zeta function, Quart. J. Math. 70 (4) (2019), 1387-1396.
[11] W. Heap and K. Soundararajan, Lower bounds for moments of zeta and L-functions revisited. 2020, https://arxiv.org/abs/2007.13154.
[12] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. 27 (2) (1926), 273-300.
[13] A. Ivić, The Riemann Zeta-Function, John Wiley \& Sons, New York, 1985 (2nd ed. Dover, 2003).
[14] H. Iwaniec, Lectures on the Riemann Zeta Function, Univ. Lecture Ser., vol. 62, Amer. Math. Soc., Providence, RI., 2014.
[15] J. E. Littlewood, On the zeros of the Riemann zeta-function, Proc. Camb. Philos. Soc. 22 (1924), 295-318.
[16] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. Lond. Math. Soc. 8 (2) (1974), 73-82.
[17] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger Math. 45 (1916), 81-84.
[18] K. Soundararajan, Moments of the Riemann zeta function, Ann. of Math. 170 (2) (2009), 981-993.
[19] E. C. Titchmarsh, The mean value of the zeta-function on the critical line, Proc. London Math. Soc. 27 (2) (1927), 137-150.
[20] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Revised by D. R. Heath-Brown, Oxford Univ. Press, New York, 1986.

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
Email address: steve.fan.gr@dartmouth.edu

